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Abstract
A theoretical analysis of the electron transport properties of plain and bumpy
jellium nanowires suspended between semi-infinite jellium electrodes is carried
out, and the possibility of the experimental observation of the conductance
oscillation with a period longer than the two-atom length is discussed. In
both the nanowires, the transmission trace as a function of the nanowire
length exhibits oscillatory behaviour. The period of the oscillation of the plain
nanowire corresponds to π divided by the Bloch wavenumber of the electrons
in the nanowire region. However, the period of the oscillation of the bumpy
nanowire results in the least common multiple of π divided by the Bloch
wavenumber and the geometric period of the nanowire. Our result indicates
that the conductance oscillation with a period longer than the two-atom length
can be experimentally observed if nanowires without any defects are formed in
experiments.

1. Introduction

As downsizing of electronic devices progresses, the electron transport properties through
atomic-scale structures have attracted more interest. When a system’s dimensions reach
the order of the electron mean free path, the electron transport becomes ballistic and its
conductance is quantized in units of G0(= 2e2/h) contrary to diffusive electron transport in a
macroscopic system, where e is the electron charge and h is Planck’s constant. In experiments,
metallic nanowires are formed using a scanning tunnelling microscope or mechanically
controllable break junctions [1]. In both cases the conductance quantization is observed in
the last stage of pulling atomic nanowires.

On the theoretical side, numerous attempts have been made to study the electron
transport properties of nanowires between electrodes, and some of them have reported that the
conductance quantization emerges in a single-row nanowire made of monovalent atoms [2–14].
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Ten years ago, Lang [2] found that the conductance of a nanowire consisting of sodium atoms
suspended between jellium electrodes oscillates with a period of the length of two-atoms as
the length of the nanowire is varied; this is called conductance oscillation. Ever since, many
studies regarding the conductance oscillation with a period of two-atom length have been
reported [2, 3, 5–14]. In 2003, the conductance oscillation was observed experimentally by
Smit et al [15] in Au, Pt and Ir nanowires. In addition, Thygesen et al [16] found that the
oscillation of a four-atom period emerges in an Al nanowire while oscillation with such a long
period has not yet been observed in experiments.

Some of the theoretical studies [2, 7, 11] concluded that the conductance oscillation could
be understood in terms of the occupation number of the highest occupied molecular orbital
(HOMO) of the system: the transmission is almost unity (minimum) when the HOMO is
fractionally (fully) occupied and the occupation number changes alternately as the number
of atoms constituting the nanowire increases. However, this interpretation cannot explain the
oscillation with a period longer than the two-atom length such as that reported by Thygesen et al
[16]. Recently, we studied the conductance oscillation of nanowires using atomistic and jellium
nanowires and reported that the conductance oscillation is observed in the jellium nanowire
even though there is no atomic configuration [13]; the period of the conductance oscillation
depends on the Bloch wavenumber of the electrons in the nanowire region. Although the origin
of the conductance oscillation has been revealed, there remains an unsettled question: why
has the oscillation with a long period of more than the two-atom length not been observed
experimentally?

In this paper we give a theoretical analysis of the electron transport properties of a plain
jellium nanowire and a bumpy jellium nanowire, which is composed of wide and narrow parts,
and also explore the possibility of experimental observation of the conductance oscillation with
a period longer than the two-atom length. Our results indicate that the period of the oscillation
is closely related to the Bloch wavenumber of the electrons in the nanowire region in the case
of the plain nanowire. On the other hand, in the case of the bumpy nanowire, the period of the
oscillation is affected by the geometric period of the nanowire as well as the Bloch wavenumber.
Although the period of the oscillation is the least common multiple of the geometric period of
the nanowire and the value of π divided by the Bloch wavenumber, a conductance oscillation
with a period longer than the two-atom length will be observed in experiments if an ideal
nanowire, which is straight and with uniform interatomic distance, can be formed.

The rest of the paper is organized as follows. The computational method is described in
section 2. Our results and discussion are presented in section 3. We summarize our findings in
section 4.

2. Computational method and model

We employ the computational method based on the real-space finite-difference ap-
proach [18–21], which is more useful than the existing plane wave approach, which is unable,
for example, to describe strictly nonperiodic systems such as clusters and solid surfaces. The
derivative arising from the kinetic energy operator in the Kohn–Sham equation is approximated
by using finite-difference formulae. We discuss the transport properties of the plain jellium
nanowire and also the bumpy jellium nanowire in order to explore the effect of the variation
of the potential arising from the existence of atoms. In jellium models, the ions of the metal
are replaced with a homogeneous positive background charge. Figure 1 shows an example of
the calculation models, where the nanowires are suspended between semi-infinite jellium elec-
trodes. In figure 1(b), the widths of wide and narrow parts of the nanowires, Wa and Wb, are 4.0
and 5.0 au, respectively, and both parts have the same lengths (La, Lb = 2.0 au). The potential
in the nanowire and electrode regions is set at zero with hard-wall boundary conditions, while
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Figure 1. Computational models of (a) a two-dimensional plain jellium nanowire and (b) a two-
dimensional bumpy jellium nanowire.

the other region is chosen to be sufficiently large to imitate the vacuum region (125h2/meW 2
b ),

where m is the free electron mass. The grid spacing of 0.25 au is employed to describe the
scattering wavefunctions and the three-point finite-difference formula is adopted for the kinetic
energy operator. The scattering wavefunctions of the incident electrons from the left electrode
are written as
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where φL is the wavefunction in the nanowire region, �s are the bulk wavefunctions inside
the electrodes, r Ls are the reflection coefficients and t L s are the transmission coefficients. The
reflection and transmission coefficients are computed by the overbridging boundary-matching
method [9, 22], in which a wavefunction infinitely extending over the whole system can be
determined by carrying out wavefunction matching based on a boundary-value problem in
terms of the Green’s function of a nanowire region. The Green’s function determined by the
inverse matrix of (E − H )−1 which is calculated by the incomplete Cholesky decomposition
conjugate gradient method [23]. Here, E is a Kohn–Sham energy and H is the Kohn–Sham
Hamiltonian of the truncated nanowire region. When we investigate the ballistic electron
transport through nanowires, the conductance G at the zero-bias limit is calculated by using
the Landauer–Büttiker formula [24],

G = 2e2

h

∑

i, j

|t L
i j |2

vi

v j
, (2)

where vi (v j ) is the z component of the expectation value of the velocity for the i th transmitted
(the j th incident) Bloch wave.
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Figure 2. Electronic band structure of the infinite plain jellium wire. Inset: computational model
for the infinite plain jellium wire.

3. Results and discussion

Figures 2 and 3 show the electronic band structure of the infinite plain jellium wire and
the transmission properties of the plain jellium nanowire suspended between semi-infinite
electrodes as a function of the length of the nanowire, respectively. The computational model of
the infinite wire is inserted in figure 2, where lz is La + Lb(= 4.0 au). We set the energy of the
incident electrons to be E(kz) of figure 2, where kzs are chosen to be kz = π/3lz , kz = π/2lz

and kz = 2π/3lz for figures 3(a), (b) and (c), respectively. The transmission properties show
oscillatory behaviour and the period of the oscillation is equal to π divided by the z component
of the wavenumber, π/kz . Although the oscillatory transmission behaviour was thought to
arise from the occupation number of the HOMO [25], this result showing that the conductance
oscillation with a period of π/kz emerges in the plain jellium nanowires is strong evidence
that the oscillation behaviour can be attributed to the z component of the Bloch wavenumber
of electrons and that the occupation number of the HOMO plays the secondary role. Figures 4
and 5 illustrate the electron charge density distributions of the scattering waves �L . One can
recognize that the length of the bunches is in agreement with π/kz in all the distributions. In
addition, all the bunches are elliptic when the transmission is unity (figure 4), whereas one of the
bunches is deformed when the transmission is minimum (figure 5). These density distributions
also support the idea that the quantum mechanical character of electrons is dominant in the
transmission oscillation. In figure 3, the amplitude of the oscillations monotonically decreases
as the z component of the Bloch wavenumber increases. This is because the length of the
bunches of the scattering waves with low Bloch wavenumber is longer than that of the waves
with high Bloch wavenumber and the waves with the long bunch hardly adjust their phase at
the interface between the nanowire and electrodes. Moreover, according to the wavefunction
matching formula [17], the amplitude of the transmission oscillation is inversely proportional
to the z component of the Bloch wavenumber of the electrons in the nanowire region.

According to the above results, an oscillation with a period longer than the two-atom
length will be observed experimentally. However, there remains another periodicity in atomistic
nanowires, the spatial variation of the potential due to the existence of atoms. We next examine
the transport properties of the bumpy jellium nanowire as shown in figure 1(b) in order to
examine the relationship between the conductance oscillation and the geometric variation of
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Figure 3. Transmission trace at the energy of E(kz) as a function of the length of the plain nanowire,
where kzs are chosen as (a) π/3lz , (b) π/2lz and (c) 2π/3lz in figure 2.

the potential. The computational model and the electronic band structure of the bumpy infinite
wire are depicted in figure 6. Figure 7 shows the transmission properties as a function of
the length of the bumpy nanowire. The energy of the incident electrons is set to be E(kz) of
figure 6, where kzs are set at kz = π/3lz , kz = π/2lz and kz = 2π/3lz for figures 7(a), (b)
and (c), respectively, so that the Bloch wavenumbers correspond to those of the plain jellium
nanowire. In the case of kz = π/2lz (kz = π/3lz), the period remains 2lz (3lz). On the contrary,
the period of the transmission oscillation is 3lz in the case of kz = 2π/3lz while that of the plain
nanowire is 3lz/2. In order to study the origin of the change of the period in detail, we depict in
figure 8 the electron charge density distributions of the scattering waves �L . The shapes of the
distributions are almost inherited from those of the plain nanowire. The length of the bunches
in figures 8(a) and (c) is equal to that in figures 4(a) and (c), while the bunches with the length
of 3lz/2 disappear in figure 8(b) and the distribution has a period of 3lz due to the disagreement
between the spatial periodicity of the bumpy nanowire and the Bloch wavenumber. Taking into
account the transmission properties of the bumpy nanowire, we can conclude that the period of
oscillation results in the least common multiple of π divided by the z component of the Bloch
wavenumber, π/kz , and the geometric period of the nanowire, lz .
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Figure 4. Electron charge density distributions of scattering wavefunctions �L with the length of
LT = (a) 5.4375 lz , (b) 5.5625 lz , (c) 5.6250 lz at the energy of E(kz) where kzs are chosen as
(a) π/3lz , (b) π/2lz and (c) 2π/3lz in figure 2. Each contour represents twice or half the density of
adjacent contour lines.

In the case of the Na and Au nanowires, since the band comprising s electrons crosses
the Fermi level at kz = π/2d , where d is the interatomic distance, the oscillation emerges.
Smit et al [15] reported that the even–odd oscillation is also observed in Pt and Ir nanowires
although Pt and Ir nanowires have 5d electrons at the Fermi level. Yet the 6s band of the Pt
and Ir nanowires crosses the Fermi level at kz = π/2d and the contribution of the channel
composed of the 6s electrons is observed in the experiment. Generally, the nanowire consisting
of atoms with many valence electrons has plural energy bands crossing the Fermi level and a
period of the conductance oscillation expected to be the least common multiples of the channels
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Figure 5. Electron charge density distributions of scattering wavefunctions �L with the length of
LT = (a) 6.9375 lz , (b) 6.5625 lz , (c) 6.3750 lz at the energy of E(kz) where kzs are chosen as
(a) π/3lz , (b) π/2lz and (c) 2π/3lz in figure 2. Each contour represents twice or half the density of
adjacent contour lines.

consisting of these bands as well as the geometric period of the nanowires. Indeed, in the
cases of the Pt and Ir nanowires, the oscillation is obscure and the conductance decreases with
increasing nanowire length [15]; there should be the certain contribution from other channels
composed of the 5d electrons. Since the long distance periodicities easily break due to defects
and thermal vibration of atoms, the conductance oscillation with a long period is expected to be
hardly observed. However, the conductance oscillation with a period longer than the two-atom
length can be observed if nanowires without any defects are formed in experiments.

4. Conclusion

We have studied the conductance oscillation of the plain and bumpy jellium nanowires
suspended between semi-infinite jellium electrodes and discussed whether the conductance
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Figure 6. Electronic band structure of an infinite bumpy jellium wire. Inset: computational model
for an infinite bumpy jellium wire.

Figure 7. Transmission trace at the energy of E(kz) as a function of the length of a bumpy nanowire,
where kzs are chosen as (a) π/3lz , (b) π/2lz and (c) 2π/3lz in figure 6.
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Figure 8. Electron charge density distributions of scattering wavefunctions �L with the length of
LT = (a) 5.3125 lz , (b) 5.2500 lz , (c) 5.3125 lz at an energy of E(kz), where kzs are chosen as
(a) π/3lz , (b) π/2lz and (c) 2π/3lz in figure 6. Each contour represents twice or half the density of
adjacent contour lines.

oscillation with a period longer than the two-atom length can be observed. The oscillation
is driven by the quantum-mechanical wave character of electrons rather than the occupation
of the states around the Fermi level. In addition, the period of the transmission oscillation
corresponds to π divided by the z component of the Bloch wavenumber of the electrons in
the nanowire region. In the case of a bumpy nanowire, the period of oscillation coincides
with the least common multiple of π divided by the z component of the Bloch wavenumber
and the geometric period of the nanowire. Although the disorders of atomic strings are hardly
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eliminated in experiments, our result indicates that oscillation with at least a three- or four-atom
period is conceivable.
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